SmartGAP Framework: Incorporating Empirical Evidence

Travel & the "D"s

Meta-Evidence from Predictive Models Vehicle Miles Traveled (VMT)

Elasticities from Regressions & Logits

Category	Urban Form Description	Elasticity for Change in VMT
Density	Household/Population Density	-0.04
Diversity	Land Use Mix (entropy)	-0.09
Design	Intersection/Street Density	-0.12
Destination Accessibility	Job Accessibility By Auto	-0.20
Distance to Transit	Distance to Nearest Transit Stop	-0.05

Source: R. Ewing & R. Cervero, Travel and the Built Environment: A Synthesis, Transportation Research Record 1780, 2001; Confirmed in Ewing & Cervero, Journal of the American Planning Association 2010.

Elasticity = (% Δ Travel Demand) / (% Δ in Land Use)

Isochronic Measure of Job Accessibility for Mission Valley Tract

Isochronic Measure of Job Accessibility via Public Transit: Mission Valley, 2000

Number of Jobs that can be reached via

Automobility's Accessibility Advantage Mission Valley, 2000

Time Isochrone	A.I. Auto	A.I. Transit	Accessibility Advantage: Auto to Transit
0-15			
Min.	380,000	75,000	5.13
0-30			
Min.	735,000	170,000	4.32
0-45			
Min.	1,180,000	280,000	4.21
0-60			
Min.	1,375,000	340,000	4.04

Meta-Evidence from Predictive Models *Transit Ridership*

Elasticities from Regressions & Logits

Dimension	Metric	# Studies	Elasticity
Density	Population Density	10	.07
	Job Density	6	.01
Diversity	Land Use Mix (0-1)	6	.12
Design	Intersections/Street Density	4	.23
	Connectivity (4-way inter.)	5	.21
Distance to	Distance	3	.29
Transit	↓		

Source: R. Ewing & R. Cervero, Travel and the Built Environment: A Meta-Analysis, Journal of the American Planning Association 2010.

Elasticity = $(\% \Delta \text{ Ridership}) / (\% \Delta \text{ in "D" Variable})$

DISTANCE TO RAIL TRANSIT

Walkability Elasticities

Variable		Description	Walking Increase	
	Density	Household/Population Density	0.07	
	Diversity	Land Use Mix (entropy)	0.15	
İ	Design	Intersection/Street Density/Connec	tivity 0.39	
	Destination Accessibility	Job Accessibility By Auto	0	
	Distance to Transit	Distance to Nearest Transit Stop	0.15	

Roadway Designs/Configurations

Curvilinear: Loops & Lollipops

Connectivity Index = 1.7

Connectivity Index = 1.2

Network Connectivity Index = (# Roadway Links) / (# Nodes)

Elasticity = $(\% \Delta \text{ Walking}) / (\% \Delta \text{ in "D" Variable})$

 $\% \Delta$ Walking = Elasticity * ($\% \Delta$ in "D" Variable)

% Δ Walking = 0.39 * (1.7/1.2) = 55%

Grounding SmartGAP: Incorporating Empirical Evidence

"Macro" S Region	ub-region Neighborhood	Settings/Place Types		
Geographic Scales	Urban Centers	Close-in Compact Communities	Suburban	Rural/Exurban
Macro/ Regional	 Adaptive Reuse/Infill/ Redevelopment 	 Mixed-Use Development/Activity Center Adaptive Reuse/Infill/Redevelo pment Job-Housing Balance 	 Mixed-Use Development/ Activity Center Adaptive Reuse/Infill/ Redevelopment Job-Housing Balance 	 Telecommunities Mixed-Use Development/ Activity Center or Traditional rural township
Meso: subregional/ corridor	 Job-Housing Balance Transit Oriented Corridor 	 Transit Oriented Corridor Job-Housing Balance 	 Transit Oriented Corridor Job-Housing Balance Mixed-Use Development/ Activity Center 	 Telecommunities Mixed-Use Development/ Activity Center or Traditional rural township
Micro: neighborhoo d/ community	TransitOrientedDevelopment	 Transit Oriented Development Traditional Neighborhood Design/New Urbanism (residential focus) 	 Transit Oriented Development Traditional Neighborhood Design/New Urbanism (residential focus) 	■ Telecommunities

Balanced Regional Growth

· AIMS:

- Reduce VMT
- RationalizeTravelsheds
- Protect & Conserve Land
- Reduce travel
 costs/
 increase housing
 affordability
 (location efficiency)

Mixing Uses at Activity Centers

Recommend 20% to 25% "Internal Capture" adjustments to ITE Trip Generation Rates for Mixed-Use Activity Centers

R. Ewing, et al. 2011. Traffic Generated by Mixed-Use Developments. *Journal of Urban Planning and Development*.

MXDs generate far less traffic than single-use suburban development

Experiences of 6 large-scale US Suburban MXDs:

- 30% Internal Capture
- 15% of External Trips by foot, bike, transit
- 45% of trips put no strain on external road network

Transit Oriented Development (TOD)

- Compact
- Mixed Land Uses
- Pedestrian-friendly design
- Physically "oriented" to transit; not just "adjacent"

Transit Station & Environs – "A Place to Be... Not Just to Pass Through"

TOD's Ridership Bonus: In U.S., a product of self-selection

ITE Trip Manual

6.72 vehicle trips per apartment unit

TODs generate 50% less traffic than predicted

17 Residential TODs

3.75 vehicle trips per unit

Source: TCRP H-27A Study, based on counts in Washington, DC; San Francisco Bay Area; Metro Portland, OR; and Philadelphia / N.E. New Jersey

Average Difference Between TOD Rates & ITE Rates for all Projects

Less by:

- 44% all day
- 49% AM Peak
- 48% PM Peak

Grounding SmartGAP: Incorporating Empirical Evidence

Induced Travel Demand

•Inputs for Software Tool: Road Expansion Scenario

Primary Source: Path Model 2002

A: Supply-side improvement, like road expansion

B: Induced travel

Near Term: Latent demand;
 mode & route shifts; longer trips
 [VMT Elasticity (function of speed) = +0.40]

■Long Term: Adds structural shifts, including induced growth and car ownership

[VMT Elasticity (function of speed) = +0.73]

C: Scenario adjustment by user accounting for induced travel impacts

Induced Travel Demand

•Inputs for Software Tool: Smart-Growth Scenario

Primary Source: Path Model 2002

A: Smart-growth scenario, like TOD

B: Induced travel:

- Near Term: Minimal
- Long Term: Some evidence of travel-inducing effects of lowering travel costs, such as with mixed-use development, but evidence is limited;
- No adjustments for possible VMTeroding impacts because of limited empirical evidence

C: Scenario adjustment at user discretion to account for possible second-order induced travel impacts

Study of MXD in Texas (Sperry et al., 2010):

- ~ ¼ of survey respondents making trips in MXD wouldn't travel if trip were external
- Estimated 17% of internal car trips were induced

Interactive Effects? TOD & TDM

- 2006 Experiment of VMT Charge in Portland OR
- 183 HHs some paid flat VMT rate; others paid rate that varied by time and location 10¢/mile peak;
 0.5¢/mile off-peak (congestion charge)
- Found greater VMT reduction in denser, mixed-use neighborhoods with congestion charges

Are Land Use Planning and Congestion Pricing Mutually Supportive? Evidence From a Pilot Mileage Fee Program in Portland, OR

Zhan Guo, Asha Weinstein Agrawal, and Jennifer Dill Journal of the American Planning Association, Vol. 77, No. 3, Summer 2011

